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Abstract

A framework for describing the deformation and failure responses of multi-phase polycrystalline microstructures is
developed from micromechanical considerations and volume averaging techniques. Contributions from damage (i.e., dis-
placement discontinuities such as cracks, voids, and shear bands) are captured explicitly in the framework’s kinematics and
balance relations through additive decompositions of the total deformation gradient and nominal stress, respectively.
These additive decompositions—which notably enable description of arbitrarily anisotropic deformations and stresses
induced by damage—are derived following the generalized theorem of Gauss, i.e., a version of the divergence theorem
of vector calculus. A specific rendition of the general framework is applied to study the response of a dual-phase tungsten
(W) alloy consisting of relatively stiff pure W grains embedded in a more ductile metallic binder material. In the present
implementation, a Taylor scheme is invoked to average grain responses within each phase, with the local behavior of indi-
vidual grains modeled with finite deformation crystal plasticity theory. The framework distinguishes between the effects of
intergranular damage at grain and phase boundaries and transgranular damage (e.g., cleavage fracture of individual crys-
tals). Strength reduction is induced by the evolving volume fraction of damage (i.e., porosity) and microcrack densities.
Model predictions are compared with experimental data and observations for the W alloy subjected to various loading
conditions.
Published by Elsevier Ltd.
1. Introduction

Constitutive descriptions for deterioration of material strength capacity due to separation or rupture of
material have been the focus of numerous investigations within the context of continuum damage mechanics
[1]. For ductile polycrystalline metals, scalar damage descriptions measuring porosity and reflecting inelastic
volume changes have received a great deal of attention in the literature [2,3]. Concurrently, representations
based on effective configurations with reduced material strength have been popularized, including models fea-
turing scalar damage variables [4] or vector- or higher-rank tensor-based damage variables [5,6]. Tensor-based
treatments have also been applied to describe degraded composite materials exhibiting a nominally elastic or
viscoelastic response [7]. In brittle ceramics, scalar damage variables are frequently implemented [8], although
0167-8442/$ - see front matter Published by Elsevier Ltd.
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more complex methods have been forwarded to account for anisotropic strain rate accommodation due to dis-
tributed microcracking [9]. Non-local or gradient-based measures have also been used for modeling damage in
ductile [10] and brittle [11] systems. From a multiscale modeling perspective, it was suggested in [12] that a
polycrystal plasticity theory can capture the evolution of crystallographic texture in conjunction with a scalar
porosity description. Proposed in [13] is a micromechanics-based model accounting for anisotropic inelastic
deformation due to grain boundary sliding and migration.

Presently, empirical scalar-based damage descriptions remain the norm in practical numerical simulations
of impact and failure [8,14]. For ductile metals, the model in [4] features a damage parameter—the cumulative
scalar plastic strain at failure—whose instantaneous value may depend upon the strain rate, temperature, devi-
atoric stress, and/or hydrostatic pressure. Macroscopic experiments (e.g., tension and torsion tests) are used to
determine failure strains and calibrate other material constants entering the model. However, since parameters
are chosen primarily upon consideration of macroscopic (stress–strain) data, the connection between these
empirical parameters and detailed elements of the microstructure is not often evident. Furthermore, failure
properties are generally isotropic in the sense that the evolution of a directionally invariant scalar parameter
(e.g., effective plastic strain at failure) dictates fracture.

Even though micromechanics-based treatments characterizing anisotropic damage have been forwarded in
the literature (cf. [9]), these models have yet to surpass, in practical or commercial applications, the empirical
scalar-based models that typically feature fewer material parameters and require comparatively less effort to
implement in a numerical setting. However, in the near future, detailed multiscale models of damage with
explicit links between microstructural properties (e.g., grain size distributions, lattice orientations, and grain
boundary character) and macroscopic strength degradation are expected to come to the fore in numerical sim-
ulations of structures undergoing failure, enabling design of materials for enhanced performance during fail-
ure processes [15], e.g., energy absorption in vehicular impact events or ballistic performance of armor and
projectiles. Considering the steady improvement regarding computational capabilities developed over the past
decade for modeling defects in microstructures, along with experimental capabilities for acquiring material
descriptions and associated properties at increasingly fine length scales, multiscale micromechanics-based
approaches akin to that forwarded here appear increasingly promising.

Constructed in the present work is a macroscopic description of damage evolution in multi-phase polycrys-
tals via direct averaging of micromechanical solutions. Following [16], the contributions from various damage
mechanisms of arbitrary geometry are explicitly accounted for in the deformation gradient decomposition,
leading to a precise description of the kinematics of anisotropic damage. While the model is more complex
than many of the above-mentioned scalar-based empirical approaches, the connection of material parameters
to the microstructure—such as lattice orientation and grain boundary content—is more immediately
apparent.

The focus of the model presented here is the thermomechanical behavior of metallic polycrystals. In crystal
plasticity theory [17], slip system geometries are tracked explicitly and as a result account for elastic–plastic
anisotropy. However, damage evolution on individual crystallographic planes has not been emphasized in
the literature for metallic crystals (although the model of Espinosa et al. [9] explicitly accounts for fracture
on intrinsically weak planes in ceramic crystals). Failure of preferred lattice planes can dominate the response
of certain metallic systems such as body-centered cubic (BCC) tungsten [18]. Furthermore, in multi-phase
materials, preferred orientations for strain accommodation due to damage depend upon the grain boundary
geometry [19]. Likewise, in materials exhibiting preferred void shapes and arrangements, the contribution to
strain anisotropy from damage depends upon the stress state and constraints imposed by the surrounding
microstructure.

In Section 2, the general framework, predicated upon explicit volume averaging procedures, is described.
Following suggestions in [20,21], the primary mechanical variables upon which the framework is built are
the net deformation gradient F and net nominal stress S. In Section 3, a particular version of the general
framework is developed to study the response of a two-phase tungsten alloy of high interest for use in defense
applications. The assumption in [22] will be used to account for the deformation gradient distribution within
each phase, with individual grains modeled via crystal plasticity theory. Cleavage fractures are dictated by a
traction-based criterion on intrinsically weak crystallographic planes in each W grain [18], while intergranular
decohesion is controlled by a stress- and temperature-based model developed following consideration of
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previous physical and numerical experiments [19,23–26]. In Section 4, numerical implementation of the frame-
work is described. Model predictions are then discussed in Section 5: the model adequately characterizes the
mechanical response of a W alloy under tensile loading at low and high strain rates and under shear loading at
low strain rates. Conclusions follow in Section 6.

The following notation is used. Vector and tensor quantities are represented with boldface type, while sca-
lars and individual tensor components are written in italics. The index notation is often used, following the
Einstein summation convention and distinguishing between covariant (subscript) and contravariant (super-
script) components. Juxtaposition implies summation over two repeated adjacent indices (e.g.,
ðABÞ:ba ¼ AacBcbÞ. The dot (scalar) product of vectors is represented by the symbol ‘‘Æ’’ (e.g., a Æ b = aagabbb,
with gab components of the metric tensor). Angled brackets denote a dual (scalar) product (e.g., for
second-rank tensors, hA,Bi = tr(AB) = AabBba). The colon denotes contraction over repeated pairs of indices
(e.g., A : B = tr(ATB) = AabBab and C : D = CabcdDcd). The symbol ‘‘�’’ represents the tensor (outer) product
(e.g., (a � b)ab = aabb).

2. Multiscale framework

2.1. Kinematics

Let X and x denote local fine scale reference and spatial coordinates within a volume element of material.
The local deformation gradient f is then given by
f � ox

oX
; f a

:A �
oxa

oX A . ð1Þ
The net deformation gradient F for the element is then determined from the motion of the volume element’s
external boundary:
F � 1

V

Z
S

x�NdS; F a
:A �

1

V

Z
S

xaN A dS; ð2Þ
where x in (2) are fine scale spatial coordinates along external surface S with outward unit normal N. The vol-
ume of the material element in the reference configuration is denoted by V, and coincident uniform coordinate
systems are assumed in each configuration. When the material is damage-free (i.e., the displacement is contin-
uous and differentiable throughout V, implying that V is simply connected), quantities entering Eqs. (1) and
(2) are related by the generalized theorem of Gauss [16,20,21], i.e.,
F a
:A �

1

V

Z
S

xaNA dS ¼ 1

V

Z
V

o

oX A ðx
aÞdV ¼ 1

V

Z
V

f a
:A dV ; ð3Þ
meaning that F is the exact volume average of f. However, when internal surfaces exist within V, (3) does not
apply. Instead, the volume-averaged deformation gradient F within intact material satisfies
F � 1

V

Z
V

f dV ¼ 1

V

Z
S

x�NdS � 1

V

Z
A

x�Nd dA; ð4Þ
where A denotes the union of referential surface areas across which the material displacement becomes discon-
tinuous, with corresponding reference normal Nd, by convention directed outward from the reference surface
into the material. Quantities introduced in Eq. (4) are illustrated in Fig. 1 for the particular case of a polycrys-
tal undergoing intergranular separation, with area A consisting of two different grain boundary facets with
reference normal vectors Nd

ð1Þ and Nd
ð2Þ. Eqs. (2) and (4) may be combined as
F ¼ 1

V

Z
S

x�NdS ¼ 1

V

Z
V

f dV|fflfflfflfflfflffl{zfflfflfflfflfflffl}
F

þ 1

V

Z
A

x�Nd dA|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Fd

¼ Fþ Fd; ð5Þ
emphasizing the additive contributions of bulk material ðFÞ and internal surface discontinuities (Fd) to the net
deformation gradient F supported by the volume element.



Fig. 1. Finite deformation of polycrystal exhibiting intergranular fracture.
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When the geometry of the damage entities may be adequately described via a fewer number of coordinates
relative to the geometry of the body, e.g., a planar crack in a three-dimensional body or a shear line discon-
tinuity in a two-dimensional body, Eq. (4) acquires the reduced form [16,19]
F � 1

V

Z
V

f dV ¼ 1

V

Z
S

x�NdS|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
F

� 1

V

Z
A

sxt�Nd dA|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fd

; ð6Þ
where the displacement jump sxb = x+ � x� and the normal covector Nd = Nd+ = �Nd� on opposing (positive
and negative) faces of the discontinuity. Please note that Eqs. (1)–(6) are valid for any solid body, and make no
specific assumptions regarding the composition of the material (e.g., crystal structure).

2.2. Stresses and balance relations

Let s denote the local nominal stress (the transpose of the first Piola–Kirchhoff stress), related to the fine
scale Cauchy stress r by sAa ¼ jf �1A

:b rba, where in Cartesian coordinates the Jacobian determinant j = det(f).
The net nominal stress S for the volume element is defined by
S � 1

V

Z
S

X� tdS; SAa � 1

V

Z
S

X Ata dS; ð7Þ
where t is the traction vector per unit reference area acting on external surface S, satisfying ta = SAaNA. The
conventional local balances of linear and angular momentum are written as
osAa

oX A þ ba ¼ q0€x
a; f a

:AsAb ¼ f b
:AsAa; ð8Þ
where ba are components of the body force vector per unit reference volume, and q0 is the reference mass den-
sity. When the material element is damage free (simply connected with no internal surface discontinuities), and
for the particular case of locally quasi-static conditions and in the absence of local body forces, i.e.,
€xa ¼ ba ¼ 0, there results [20,21]
SAa ¼ 1

V

Z
S

X AsBaNB dS ¼ 1

V

Z
V

oðX AsBaÞ
oX B dV ¼ 1

V

Z
V

osBa

oX B X A þ dA
BsBa

� �
dV ¼ 1

V

Z
V

sAa dV . ð9Þ
However, when the volume element contains internal surfaces with total area A, as well as local inertia and/or
body forces, the nominal stress supported by the bulk material Ŝ becomes [19]
ŜAa � 1

V

Z
V

osBa

oX B X A þ dA
BsBa

� �
dV ¼ 1

V

Z
S

X Ata dS|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
SAa

� 1

V

Z
A

X AðtdÞa dA|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ðSd ÞAa

¼ 1

V

Z
V

sAa dV|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
SAa

þ 1

V

Z
V
ðq0€x

a � baÞX A dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðSbÞAa

ð10Þ
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where S is the volume-averaged nominal stress, Sb is the stress contribution due to micro-inertia and body
forces, and Sd accounts for traction supported by internal surfaces, such that t = Nd Æ s on local internal sur-
face element dA. Combining Eqs. (7) and (10), the additive nominal stress decomposition is obtained:
S ¼ Sþ Sb þ Sd. ð11Þ

Analogously to Eq. (6), for a damage entity exhibiting geometry of one spatial dimension less than that of the
body, the contribution to the stress from traction on internal surfaces can be written as
Sd ¼ 1

V

Z
A

X� sttdA; ð12Þ
where X = X+ = X� and the traction jump stb = t+ � t� = Nd Æ (s+ � s�) on opposing (i.e., positive and neg-
ative) faces of the internal surface A, for example along opposing sides of a crack front. Notice that Sd van-
ishes when all internal surfaces are traction-free. At the macroscopic scale of observation, the stress balance
laws are here assumed to exhibit the same form as Eq. (8), i.e.,
oSAa

oX A þ Ba ¼ �q0€xa; F a
:ASAb ¼ F b

:ASAa; ð13Þ
where X and x refer now to macroscopic referential and spatial coordinates, respectively, coincident with their
microscopic counterparts, and with B � V �1

R
V bdV and �q0 � V �1

R
V q0 dV . Note that Eq. (13) are imposed by

assumption and are not direct volume averages of Eq. (8).

2.3. Thermodynamics

The local (fine scale) balance of energy is written as follows:
_eþ div0q� hs; _fi ¼ r; ð14Þ

with e the internal energy per unit reference volume, q the heat flux vector per unit reference area, and r the
energy source per unit reference volume. Here, div0 denotes divergence with respect to reference coordinates
X. The local entropy inequality is written as follows, with _g the time rate of entropy production per unit ref-
erence volume and h the local temperature:
_g P �div0

q

h

� �
þ r

h
. ð15Þ
The Helmholtz free energy per unit reference volume w is introduced as
w � e� hg; ð16Þ
from which, upon substitution of Eqs. (14) and (16) into (15), the entropy relation becomes
hs; _fi � hq;r0hi
h

P _wþ _hg; ð17Þ
with $0 the covariant derivative with respect to X. The local heat flux is dictated by
q ¼ �k � r0h; ð18Þ

where the contravariant conductivity tensor k reduces to kAB = kdAB for isotropic conduction in a Cartesian
reference coordinate system, with dAB Kronecker’s delta.

At the macroscale, relations analogous to Eqs. (14)–(18) are assumed to apply, with _F and S serving as the
primary mechanical variables. Define the following quantities:
E � V �1

Z
V

edV ; �h � V �1

Z
V

hdV ; R � V �1

Z
V

r dV . ð19Þ
The macrolevel balance of energy is then postulated as
_E þDiv0Q� hS; _Fi ¼ R; ð20Þ
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where Div0 denotes divergence with respect to macroscopic referential coordinates, and where the macroscopic
heat flux Q satisfies
Q ¼ �K � r0
�h; ð21Þ
with r0 the macroscopic referential covariant derivative and K the effective thermal conductivity (note that K

is not necessarily a volume average of k for heterogeneous microstructures). The macroscopic volumetric free
energy is defined by
W � E � �h�g; ð22Þ
and the reduced entropy equality is introduced at the macro-level:
_�g P �Div0

Q
�h

� �
þ R

�h
. ð23Þ
Here, �g is the macroscopic effective entropy per reference volume for the aggregate, and is not necessarily a
volume average. Insertion of Eqs. (20) and (22) into (23) then gives
hS; _Fi � hQ;r0
�hi

�h
P _Wþ _�h�g; ð24Þ
a relationship analogous to fine scale inequality Eq. (17). Please note that Eq. (24) is a strict volume average of
Eq. (17) under the following conditions: (i) damage and micro-inertial effects are absent such that F ¼ F and
S ¼ S, (ii) isothermal conditions exist such that temperature rates and temperature gradients vanish, and (iii)
particular boundary conditions are applied to the surface S of element V such that the right side of the fol-
lowing equation vanishes [20]:
V �1

Z
V

_fsdV � _FS ¼ V �1

Z
S
ð _x� _FXÞ � nðs� SÞdS. ð25Þ
Expanding F and S via Eqs. (5) and (11), respectively, Eq. (24) becomes
hSþ Sb þ Sd; _Fi þ hSþ Sb þ Sd; _Fdi � hQ;r0
�hi

�h
P _Wþ _�h�g. ð26Þ
3. Multiscale theory for dual-phase polycrystals

Here the model framework of Section 2 is applied to study cumulative deformation and damage in tungsten
alloys. The particular material of interest consists of relatively stiff and brittle pure tungsten grains (BCC)
embedded in a relatively compliant and ductile matrix (FCC) consisting of nickel (50 wt.%), iron (25 wt.%),
and tungsten (25 wt.%). The composite microstructure nominally is comprised of 90% pure W and 10% matrix
alloy, and thus features a net weight distribution of 93W–5Ni–2Fe. Typically, grain sizes span 10–30 lm for
the W crystals and 200–500 lm for the FCC phase [19], meaning that multiple W crystals are often embedded
within each single crystal of the binder phase. Because of their relatively large mass density, high melting
point, and high strength at elevated rates of loading [23–26], tungsten heavy alloys are attractive materials
for use in kinetic energy penetrators (i.e., projectiles).

Under high rate impact conditions, tungsten alloys may exhibit a complex set of deformation and damage
modes, each describable by the model framework postulated in the present paper. Phenomena of primary
interest include:

• Effects of crystallographic texture and grain elongation. In kinetic energy penetrators, swaging and pre-
twisting of tungsten rods may produce a preferred orientation of individual W crystals comprising the
microstructure. Furthermore, experimental and numerical studies have demonstrated a possible correlation
between performance of penetrators and the orientations of crystals comprising their microstructures
[27].



Fig. 3. Intergranular damage at W–W interfaces in 93W–5Ni–2Fe alloy.

Fig. 2. Finite tensile deformation of dual-phase polycrystalline alloy exhibiting transgranular and intergranular fracture.
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• Effects of a variety of fracture mechanisms, as illustrated in Fig. 2. Under positive hydrostatic stress, W
alloys are prone to failure by one or more of the following modes [19,25,28]: (i) intergranular fracture at
W–W boundaries (Fig. 3), (ii) intergranular fracture at W–binder phase interfaces, (iii) cleavage fracture
of W grains, and (iv) intragranular rupture of the binder (i.e., matrix) phase. In penetration applications,
tensile stress states often arise when tungsten rods encounter a oblique targets or ricochet, leading to bend-
ing and subsequent transverse fracture. Preference of one damage mechanism over the others may depend
on processing history, temperature, and loading rate [29].

• Effects of initial microstructure: phase volume fractions and grain boundary contiguity. The volume
fraction of binder phase, as well as the connectivity of grain and phase boundaries which act as potential
initiation sites for fracture, are known to influence the macroscopic strength and ductility of the alloy
[24–26,29].

In what follows, constitutive models for each relevant aspect of tungsten behavior are addressed within the
context of the framework of Section 2. Specifically, crystal plasticity models for tungsten and binder phases,
intragranular fracture criteria, grain and phase interaction laws, and intergranular failure models are devel-
oped, coupled, and merged into our framework.

3.1. Crystal plasticity models for microscopic response

Crystal plasticity models are invoked for the response of each crystal in the dual-phase aggregate. The
structure of the model for the tungsten (BCC) and matrix (FCC) phases is similar, though different parameters
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are naturally used for each. Only the essential elements are given here; for additional details on model devel-
opment, the reader is referred to [19].

The local deformation gradient f of Eq. (1) is decomposed multiplicatively as
f ¼ fefhfp; ð27Þ

where fe, fh, and fp represent, respectively, the kinematics of elasticity and rigid-body rotation, thermal expan-
sion or contraction, and the cumulative contribution of moving crystal defects (i.e., dislocation glide and pseu-
do-slip due to twinning). The elastic and thermal terms dictate the deformation of the slip direction
contravariant vectors s(a) and slip plane normal covariant vectors m(a):
sðaÞ ¼ fefhs
ðaÞ
0 ; mðaÞ ¼ m

ðaÞ
0 fh�1fe�1. ð28Þ
The spatial velocity gradient l is decomposed as
l � o _x

ox
¼ _ff�1 ¼ _fefe�1|fflffl{zfflffl}

�le

þ fe _fhfh�1fe�1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�lh

þ fefh _fpfp�1fh�1fe�1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
�lp

; ð29Þ
with the superposed dot the material time derivative. Of concern here are cubic lattices. Hence, the thermal
deformation is assumed isotropic:
lh ¼ _fhfh�1 ¼ aT
_h1; ð30Þ
where aT is the thermal expansion coefficient giving the change in length per unit current length per unit incre-
ment in h, and 1 is the unit tensor. The plastic velocity gradient in the intermediate configuration (denoted by �b
in Fig. 4) is defined as in crystal plasticity theory [17]:
�lp � _fpfp�1 ¼
Xn

a¼1

_cðaÞsðaÞ0 �m
ðaÞ
0 ; ð31Þ
with _cðaÞ the plastic shearing rate on slip system a, spanning n total active slip systems.
We assume a Helmholtz free energy potential per unit mass, #, of the form
q�1
0 w � # ¼ #ðee; h; nÞ; ð32Þ
where the intermediate configuration elastic strain 2ðeeÞab ¼ f ea
:a gabf eb

:b � ~gab, with ~gab a metric tensor on ~b. The
symbol n denotes a dimensionless scalar internal variable representing stored micro-elastic energy associated
Fig. 4. Deformation maps and configurations of local single crystalline volume element.
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with crystal defects that may impede shearing on each slip system (i.e., dislocations). Let ~q denote the mass
density in configuration ~b and let the elastic second Piola–Kirchhoff stress be written ðseÞab �
jef e�1a

:a rabf e�1b
:b ¼ ~q o#

oee
ab

, with je � ~q=q and ~q the local mass density in configuration ~b. The resolved Cauchy

stress on system a is found by s(a) � r : (gs(a) � m(a)). The localized energy balance in Eq. (14) can be written
in the spatial frame as follows [19]:
qĉ _h|{z}
temperature

change

¼
Xn

a¼1
sðaÞ _cðaÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

plastic
dissipation

� qððon#Þ � hðon#ÞÞ _n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
energy of lattice defects

þ qhohee# : _ee|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
thermoelastic coupling

þ divðk � rxhÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
heat

conduction

þ q
q0

r|{z}
heat

supply

. ð33Þ
In (33), the specific heat capacity ĉ is defined as q0ĉ � ohe. Also, $x denotes covariant differentiation with
respect to fine scale spatial coordinates x, and div likewise denotes divergence with respect to x.

When elastic strains are small, the instantaneous response of the material is adequately described by linear
hyperelasticity theory. A free energy potential per unit intermediate configuration volume is specified in this
case as
~q# ¼ 1

2
ee : C : ee þ 1

2
jlðhÞn2 þ yðhÞ; ð34Þ
where C and l are the fourth rank elastic modulus tensor in configuration ~b and an effective shear modulus,
respectively, and j is a dimensionless parameter that we assume is independent of strain rate and temperature.
The function yðhÞ ¼ �ĉh lnðh=h0Þ accounts for the purely thermal energy, with h0 a reference temperature at
which y = 0. From partial differentiation of (34), we see that the stress satisfies the linear-hyperelastic relation-
ship se ¼ C : ee. For an isotropic response, the elastic modulus tensor is given by
Cabvd ¼ kðhÞ~gab~gvd þ lðhÞð~gav~gbd þ ~gad~gbvÞ; ð35Þ

with Lamé’s constant k and ~gab contravariant components of the metric tensor on configuration ~b. Please note
that (35) is appropriate as single crystalline tungsten exhibits the unique property of isotropy with respect to
elastic constants. Temperature dependencies of moduli of (35) are modeled as follows to first order for pure W:
ohk ¼ Ch
1k þ Ch

2kðh� 273Þ; ohl ¼ Ch
1l þ Ch

2lðh� 273Þ; ð36Þ
where Ch
1k;C

h
2k;C

h
1l, and Ch

2l are material parameters.
A power-law viscoplastic flow rule is invoked to model the time rate of plastic deformation within each

crystalline phase of the dual-phase material:
_cðaÞ ¼ _c0

~sðaÞ

gðaÞ

� �m

sgnð~sðaÞÞ. ð37Þ
In (37), _c0 and m are material constants, g(a) is the slip resistance, ~sðaÞ � jesðaÞ, and sgn(x) = x/jxj, with
sgn(0) = 1. Thermal softening attributed to increased dislocation mobility at high temperatures is incorpo-
rated via the power-law form
gðaÞ ¼ gðaÞ0 ðh=h0Þp; ð38Þ
with gðaÞ0 the flow resistance at reference temperature h0 and p a dimensionless constant. The following rela-
tionship is imposed between the ‘‘average’’ hardening over all systems at fixed reference temperature and
the internal variable n:
1

n

Xn

a¼1

ðgðaÞ0 � gðaÞy Þ ¼ âl b
ffiffiffiffiffi
qT

p|fflffl{zfflffl}
�n

; ð39Þ
with gðaÞy an initial yield stress, b the magnitude of the Burgers vector, and qT the total dislocation line length
per unit intermediate configuration volume associated with shearing impedance. The scalar proportionality
factor â accounts for dislocation interactions. Both lattice friction stress and effects of initial dislocation den-
sity are incorporated in the initial yield stress gðaÞy .
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For the BCC W phase, we allow slip in the h111i close-packed directions on any of the {110} and {112}
families of planes, meaning the number of potentially active slip systems is n = 24. Evolution of slip resistance
at reference temperature h0 is dictated by a hardening-minus-dynamic-recovery relation:
Table
Therm

Param

k
l
q0

ĉ
_c0

m

q

A

B

gðaÞy
p

h0

aT

k

â
b

j
Ch

1k

Ch
2k

Ch
1l

Ch
2l
_gðaÞ0 ¼ A
Xn

b¼1

qa
bj _cðbÞj � BgðaÞ0

Xn

b¼1

j _cðbÞj; ð40Þ
with the interaction matrix satisfying
qa
b ¼ da

b þ qð1� da
bÞ; ð41Þ
where q is the latent hardening ratio.
In the W–Ni–Fe matrix material, the number of potentially active slip systems is chosen as n = 12. Assume

that dislocations glide in h110i close-packed directions on {111} planes for this FCC metal. Elastic isotropy is
also assumed for this phase, meaning that Eq. (35) applies, albeit with elastic stiffness constants for the matrix
substantially lower in magnitude than those for the pure W. We specify strain rate- and temperature-depen-
dent slip resistances in crystals comprising the more compliant matrix phase via Eqs. (40) and (41), though
with different values of A, B, and q than those invoked for the pure W grains.

Material properties for thermoelasticity and plasticity in each phase are listed in Table 1.

3.2. Fracture model for W cleavage

Pure tungsten single crystals are known to fracture along the preferred crystallographic planes having ori-
entations {100} and {110}, with the former characterized by relatively lower fracture toughness than the lat-
ter [18]. Furthermore, tungsten exhibits a ductile-to-brittle transition, with cleavage resistance increasing
dramatically at ambient temperatures above around 370 K [18,29]. Despite the increase in fracture toughness
of W with temperature, O’Donnell and Woodward [29] recorded an increase with temperature in contributions
from W cleavage relative to the influence of intergranular fracture and matrix rupture mechanisms in the
tensile response of the dual-phase tungsten alloy of primary interest in the present work. The fracture process
is thought to commence on weak tungsten-tungsten grain boundaries, and then proceed to subsequent grain
1
oelastic and plastic properties for crystalline phases

eter Value (W) Value (matrix)

204 Gpa 137 GPa
161 Gpa 99 GPa
19350 kg/m3 9200 kg/m3

134 J/(kg K) 382 J/(kg K)
0.001 0.001
20 20
1.4 1.0
630 MPa 200 MPa
1.5 0.4
500 MPa 150 MPa
�1.5 �1.5
300 K 300 K
5.3(10)�6/K 1.5(10)�5/K
160 W/(m K) 100 W/(m K)
0.439 1.03
0.275 nm 0.257 nm
1333 200
�3.4 MPa/K –

0.0065 MPa/K2 –

�10.3 MPa/K –

�0.0041 MPa/K2 –
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cleavage when the number of intergranular fracture sites is insufficient to support crack propagation across the
specimen [19,25,28,29].

The present model focuses upon tensile cleavage fracture under mode I conditions. A stress- and temper-
ature-based initiation criterion is proposed, along with a micromechanically inspired model for crack exten-
sion on the fracture plane and crack opening normal to the plane of cleavage. Tangential initiation criteria and
opening displacements are not considered here, as the material is known to exhibit much greater ductility
under shearing and compressive loading conditions [23]. This model accounts for the microstructural config-
uration on fracture (through the orientation of preferential cleavage planes), and permits anisotropic global
deformation due to damage.

The initiation criterion for cleavage fracture is specified as
Table
W gra

Cf100g
1

Cf100g
2

Cf110g
1

Cf110g
2

CR
W

_e0
W

z1

z2

rmax
W

sðkÞ � sAam̂ðkÞa M̂ ðkÞ
A ¼ ŝðkÞðhÞ; ð42Þ
where sAa is the local nominal stress, m̂ðkÞa and M̂ ðkÞ
A are spatial and referential co-vectors normal to potential

cleavage planes with index k, and ŝ(k)(h) is a temperature-dependent fracture strength obeying the linear
relationship
ŝðkÞðhÞ ¼ Cf100g
1 þ Cf100g

2 ðh� h0Þ for f100g planes,

Cf110g
1 þ Cf110g

2 ðh� h0Þ for f110g planes:

(
ð43Þ
Values of parameters in Eq. (43) were selected upon assuming proportionality between our fracture stress ŝ(k)

and the published fracture toughness data of pre-cracked tungsten single crystal bars loaded in three-point
bending [18]. Values are listed in Table 2. Upon initiation of damage, i.e., satisfaction of criterion in Eq.
(42), crack growth and/or opening may occur on damage plane k. It is assumed here that each grain or sub-
grain can support only one microcrack, i.e., fracture is limited to the first plane achieving the criterion in
Eq. (42). The contribution of cleavage damage Fd

W to the global deformation gradient F is calculated from
Eq. (6), where the subscript W corresponds to the pure tungsten phase:
Fd
W ¼

1

V

Z
AW

sxt�Nd dAW ¼
fW

V W

XNW

k¼1

ðsxtAW �Nd
WÞ
ðkÞ ¼ fW

V W

XNW

k¼1

ðkd � M̂ÞðkÞ. ð44Þ
Here summation runs over NW distinct damage planes, each with corresponding referential area AðkÞW . The
volume fraction of pure W in the dual-phase system satisfies fW = VW/V, with V W ¼

P
V ðkÞW the total volume

of the W crystals. For mode I cleavage on preferred planes, the reference orientation satisfies N
dðkÞ
W ¼ M̂ðkÞ,

and the direction of opening is collinear with m̂ðkÞ, i.e., kdðkÞ ¼ kkdðkÞkm̂ðkÞ. The magnitude of the crack opening
displacement jump (multiplied here by the microcrack area) follows from [9], assuming circular-shaped
flaws:
kkdðkÞk ¼
16pð1� m2Þ

3E
sðkÞ rðkÞW

� �3
� 	

P 0 for sðkÞ P 0;

0 for sðkÞ < 0:

8><
>: ð45Þ
2
in cleavage properties

1.75 GPa

0.010 GPa/K

1.90 GPa

0.010 GPa/K

2.66 km/s

104/s
1.0
1.0
30 lm



174 J.D. Clayton / Theoretical and Applied Fracture Mechanics 45 (2006) 163–185
In Eq. (45), m and E are Poisson’s ratio and Young’s modulus for undamaged pure crystalline tungsten, and
the crack opening displacement is non-zero only for tensile loading, i.e., for s(k) > 0. The microcrack radius

and area are related by AðkÞW ¼ p rðkÞW

� �2

. The time rate of damage deformation is thus dictated by the rate of

nominal stress as well as the rate of crack extension, the latter described by a strain rate- and stress-dependent
growth law of the form
_rðkÞW ¼
CR

W

_e
_e0

W

� �z1

1� ŝðkÞ

sðkÞ

� �z2

P 0 for sðkÞ > ŝðkÞ and rðkÞW < rmax
W ;

0 for sðkÞ 6 ŝðkÞ or rðkÞW ¼ rmax
W :

8><
>: ð46Þ
Above, CR
W is the Rayleigh wave speed in pure W, the effective strain rate _e �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þd : d

p
, with 2dab = lab +

lba, and _e0
W is a normalization parameter required on dimensional grounds. Eq. (46) is a stress- and strain-rate

based generalization of the fracture toughness-based approaches of [8,9]. However, in contrast to these ap-
proaches, (46) does not require an assumption on the initial crack size in order to propagate damage, such
that one may assume AðkÞW t¼0 ¼ 0 without difficulty. The conditions for crack growth prevent extension when

the driving force s(k) < ŝ(k) and ensure that the crack diameter does not exceed the physical dimension of grain
k, i.e., the grain size rmax

W . Exponents z1 and z2 control, respectively, the relative magnitudes of strain rate and
stress influences on crack extension. Properties for the cleavage model applied to the particular W heavy alloy
considered here are given in Table 2.

The referential orientation unit vector M̂ðkÞ in Eqs. (42) and (44) remains invariant with time, and depends
only upon the initial crystallographic orientation. In contrast, reorientation of the spatial orientation vector
follows from
m̂ðkÞ ¼ reM̂ðkÞ; ð47Þ

where re is the elastic rotation of grain k associated with the polar decomposition of the elastic deformation
gradient fe = reue. Thus, under a superposed global rigid body rotation such that F! QF, with QT = Q�1 and
detQ = 1, the consistent transformations are f! Qf, re! Qre, and Fd

W ! QFd
W.

A strain-like symmetric tensor associated with damage in crystallite k is introduced as
C
dðkÞ
W � AðkÞW

V ðkÞW

ksxtk
 !2

ðNd �NdÞðkÞ; ð48Þ
the trace of which is found as
tr C
dðkÞ
W

� �
¼ AðkÞW

V ðkÞ
ksxtk

 !2

. ð49Þ
Note that for purely mode I fractures, where each corresponding displacement jump and normal vector to the
crack plane are co-linear, the volume fraction of damage per unit reference volume of the local grain k is then

found, in Cartesian coordinates, by the quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr C

dðkÞ
W

� �r
.

3.3. Intergranular fracture model

The model discussed here collectively accounts for the following three mechanisms of damage in the tung-
sten alloy: separation at W–matrix interfaces, failure along W–W grain boundaries, and matrix rupture (which
is generalized here to include failure at interfaces between two matrix grains as well as crack propagation
across matrix grains). The matrix rupture mechanism is labeled here as an intergranular failure mode, as
we do not prescribe a damage criterion for cleavage within each individual matrix grain.

Fractures initiate on preferred locations in the microstructure. Experiments have implied that weakest
intergranular failure sites in the alloy under consideration are W–W contacts, followed by W–matrix phase
boundaries, followed by internal boundaries within the matrix phase [24,25]. However, a previous numerical
investigation [19] demonstrated a tendency for initiation on W–W boundaries, even if all interfaces are equally
strong, simply due to relatively larger stresses supported by the W grains. Relative strengths of the interfaces
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are thought to vary with temperature and processing conditions that may affect impurity concentration at the
interfaces [28,29].

Analogously to Eq. (42), stress-controlled damage initiation is assumed. This assertion follows from exper-
imental agreement in peak resolved normal failure stresses observed in macroscopic tension, bending, and
spallation [25,28]. Criteria are written in a general form as
SðiÞ � SAamðiÞa M ðiÞ
A ¼ ŜðiÞð�hÞ; ð50Þ
where mðiÞa and M ðiÞ
A are spatial and referential unit normal vectors to potentially damaged planes, and the index

i spans all potential fracture sites for the mechanisms of W–W, W–matrix, and matrix–matrix separation.
Components of the total stress SAa are defined in Eq. (7). Fracture stresses ŜðiÞ are assumed linearly temper-
ature-dependent and written as
ŜðiÞð�hÞ ¼ CI
1 þ CI

2ð�h� h0Þ. ð51Þ

Here CI

1 and CI
2 are material parameters and �h is the average temperature introduced by definition (19). Note

that Eq. (51) assumes normal stress-based initiation; shear stresses are not assumed to initiate damage, follow-
ing previous arguments and experimental observations. The number, initial orientation M ðiÞ

A , and maximum
size of each potential damage plane must be assigned as initial conditions, based on microstructural charac-
terization. In the implementation that follows, we assume a distribution of damage planes exists encompassing
all possible orientations, thereby reducing Eq. (50) to a maximum normal stress criterion with NI = 1. In other
words, we assume the existence of a single crack plane of initial orientation Mð1Þ ¼M, where M is the principal
direction corresponding to the maximum positive eigenvalue of the symmetric nominal stress tensor SAaF �1B

:a .
Furthermore, damage planes are assumed to rotate with the average material deformation F of Eq. (4) in
Cartesian coordinates as
mðiÞ ¼ RMðiÞ; ð52Þ

where the polar decomposition of the material deformation is written as F ¼ RU.

Upon initiation of damage through attainment of criterion in Eq. (50), crack growth and/or opening may
occur on damage plane i. The contribution of damage to the global deformation gradient F is calculated from
Eq. (6), where the subscript label I corresponds to the three aforementioned intergranular mechanisms of
interest here:
Fd
I ¼

1

V

Z
AI

sxt�Nd dAI ¼
1

V

XN I

i¼1

sxtAI �Nd
I


 �ðiÞ ¼ 1

V

XN I

i¼1

ðkd �MÞðiÞ. ð53Þ
Note that AI spans failure sites along W–W interfaces, W–matrix sites, and matrix internal boundaries, and
that for mode I fractures, NdðiÞ ¼MðiÞ and kdðiÞ ¼ kkdðiÞkmðiÞ. From Eqs. (3), (4), (52) and (53), under super-
posed rigid body rotation, F! QF, f! Qf, and F! QF, leading to the consistent relation Fd

I ! QFd
I .

The magnitude of intergranular crack opening (multiplied here by the crack area, assuming a circular crack
of radius rðiÞI ), is described by a relation analogous to Eq. (45):
kkdðiÞk ¼
16pð1� m2Þ

3E
SðiÞ rðiÞI

� �3
� 	

P 0 for SðiÞ P 0;

0 for SðiÞ < 0:

8><
>: ð54Þ
Here m and E are the effective Poisson’s ratio and Young’s modulus for the undamaged dual-phase tungsten
alloy, and the crack opening displacement is non-zero only for tensile loading. The microcrack radius and area

are related by AðiÞI ¼ p rðiÞI

� �2

. The rate of crack growth is again described by a stress- and strain rate-driven
growth law of the form
_rðiÞI ¼
CR

I

_E
_e0

I

 !Z1

1� ŜðiÞ

SðiÞ

 !Z2

P 0 for SðiÞ > ŜðiÞ and rðiÞI < rmax
I ;

0 for SðiÞ 6 ŜðiÞ and rðiÞI ¼ rmax
I :

8>><
>>: ð55Þ



Table 3
Intergranular fracture properties

CI
1 1.20 GPa

CI
2 0.010 GPa/K

CR
I 2.57 km/s

_e0
W (2/3)104/s

Z1 1.0
Z2 1.0
E 366 GPa
m 0.29
rmax

I 100 lm
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In Eq. (56), CR
I is the Rayleigh wave speed in the dual-phase alloy (computed from the effective elastic con-

stants of the undamaged composite), the effective strain rate _E �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3ÞD : D

q
, with 2Dab ¼ Lab þ Lba,

L � _FF�1, and _e0
I , Z1, and Z2 are material constants analogous to those introduced in Eq. (46). Crack exten-

sion is prevented when the driving force SðiÞ 6 ŜðiÞ, and the crack diameter is forbidden from exceeding the
physical dimension rmax

I of oriented surface i. Material parameters for the intergranular damage model are
provided in Table 3.

A strain-like symmetric tensor associated with intergranular damage in V, here restricted to a single crack
plane (NI = 1), is introduced as
Cd
I �

AI

V
ksxtk

� �2

ðNd �NdÞ; ð56Þ
the trace of which is found as follows, since Nd is a unit vector:
trðCd
I Þ ¼

AI

V
ksxtk

� �2

. ð57Þ
For purely mode I microcracking, the volume fraction of intergranular damage per unit reference volume of

the aggregate is then equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCd

I Þ
q

.

3.4. Grain and phase interactions

The general framework introduced thus far allows one to opt for one of a variety of interaction schemes for
grains of like and differing phases, for example Taylor [22] or self-consistent schemes [30], or fully resolved
calculations at the microscale in which grain and phase topologies are fully described [19]. The latter two
methods are accompanied by increased complexity with regards to problem solution (e.g., numerical imple-
mentation and computation times). Fully resolved microstructural calculations, in which individual integra-
tion points encompass volumes on the scale of a few micrometers, are not yet tractable for solving complex
boundary value problems with global dimensions on the order of more than several millimeters.

In the present implementation we employ Taylor’s assumption [22] of deformation gradient uniformity
among phases comprising each crystalline volume element V. The average material deformation of Eq. (4)
is rewritten for the particular alloy of study as
F ¼
fW

NW

XNW

i¼1

�f
ðiÞ
W|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

FW

þ

fM

NM

XNM

j¼1

f
ðjÞ
M|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

FM

; ð58Þ
where subscripts W and M denote grains of pure W phase and matrix binder phase, respectively, N and f rep-
resent the number of grains of equal volume and volume fraction of the particular phase, and fðiÞðfðjÞÞ is the
local deformation gradient assumed uniform within grain i (j) of the particular phase. The response of each
grain is dictated by the constitutive theory of Section 3.1. The deformation constraint imposed at the phase
level is
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F ¼ f �1
W FW ¼ f �1

M FM; ð59Þ
and that at the grain scale within each phase is
f �1
W FW ¼ f

ðiÞ
W ; f �1

M FM ¼ f
ðjÞ
M . ð60Þ
Combination of Eqs. (59) and (60) results in a uniform deformation gradient f for each grain within V, regard-
less of phase, leading to the well-known upper bound on effective stiffness for the aggregate, in the absence of
damage. Previous work [19] has indicated that under high rate tensile loading conditions, the ductile matrix
phase tends to accommodate a larger magnitude of strain relative to the stiffer W phase, though at larger
deformation levels, assumption Eq. (59) may be more justifiable as strain hardening due to dislocation accu-
mulation leads to a more uniform tangent stiffness among phases [28]. Regardless, Eq. (59) can be used to
compare predictions of material response for various microstructural configurations with the caveat that
numerical results may be overly stiff.

Average material stresses for the aggregate are found as follows, specialized here to the two-phase tungsten
alloy of interest:
S ¼ fW

N W

XNW

i¼1

�s
ðiÞ
W þ

fM

N M

XNM

j¼1

�s
ðjÞ
M ; ð61Þ
where �s
ðiÞ
W and �s

ðjÞ
M are local nominal stresses in W and matrix phases for each grain i or j. Whereas each grain is

assigned the same deformation gradient through Eq. (58), different stresses �sðiÞ arise among grains due to the
microstructure (phase and lattice orientation) and corresponding material properties. Note that internal
surfaces are presumed traction free, such that the interface-induced stress Sd = 0 in Eqs. (10)–(12). This
assumption is thought to be warranted under the mode I fracture modes modeled here, though may not be
justified should the model be extended to account for tangential sliding and friction at failed interfaces. As
individual grains are not resolved spatially, stresses due to micro-inertia are not computed, i.e., we set
Sb = 0 in Eq. (11). In the absence of body forces, this assumption corresponds to uniform acceleration €xa

of Eqs. (8) and (10) throughout each grain in V when referred to a local referential coordinate system located
at the centroid of each grain. Macro-inertia of Eq. (13) is fully taken into account, however, as the present
assumption corresponds to a uniform €xa assigned over each V.

In the present implementation, thermal interactions are neglected between grains and phases, meaning that,
depending upon the applied deformation rate, we impose in Eq. (33) either the isothermal constraints _h ¼ 0
(low strain rates and long deformation histories) or adiabatic constraints hk,$xhi = 0 (high strain rates and
short deformation histories), throughout the volume V. This assumption is necessary within the context of
the Taylor-type approximations above, as temperature gradients between neighboring grains cannot be spa-
tially resolved.

3.5. Homogenization of damage

Effects from mechanisms modeled individually—elastoplasticity within each phase, cleavage fracture of W
grains, and/or intergranular damage modes—are homogenized in a scheme that adheres to the general frame-
work of Section 2. The total deformation gradient for the element V is computed from Eq. (5) as
F ¼ Fþ Fd ¼ Fþ Fd
W þ Fd

I|fflfflfflfflffl{zfflfflfflfflffl}
Fd

; ð62Þ
where F includes the volume-averaged deformation gradients from tungsten and matrix phases, and Fd
W and Fd

I

are contributions from W cleavage and intergranular mechanisms described by Eqs. (44) and (53), respec-
tively. Total stresses entering Eq. (11) are calculated as follows:
S ¼ K : S; SAa ¼ KAa
BbSBb; ð63Þ
where the rank four object K accounts for stress- and tangent stiffness reduction due to intergranular damage.
Note that K is needed in the present implementation of the model, as strength reduction due to damage is not
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accounted for in Eq. (61) or the Taylor-type averaging scheme. However, should the framework be extended
to fully resolved calculations at the microscale in which damage entities at grain and phase boundaries are
described individually (e.g., [19]), and their effects on the local stress fields within grains are captured explicitly,
one may set K = 1 � 1. In the language of continuum damage mechanics [1,5,6], S of Eq. (63) may be regarded
as an ‘effective stress’, and K a ‘damage effect tensor’.

As a first approximation, we assume that the average material nominal stress is reduced in an isotropic
manner due to microcracking, i.e.,
Table
Effecti

au

aW

aI

xfail
W =x

xfail
I =x

ufail
KaA
bB ¼ KdA

Bd
a
b; ð64Þ
where K is a scalar damage variable depending in a multiplicative fashion upon the volume fraction of damage
(i.e., porosity), density of cleavage cracks, and density of intergranular cracks:
K ¼
ð1� auuÞ 1� aW

xW

xmax
W

� �
1� aI

xI

xmax
I

� �
for u > 0;

1 for u ¼ 0;

0 for u P ufail;xI P xfail
I or xW P xfail

W :

8>><
>>: ð65Þ
The fraction of cumulative damage per unit reference volume, u, is defined by superposition of kinematic
quantities introduced in Eqs. (49) and (57):
u ¼ 1

V

XNW

k¼1

V ðkÞW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr C

dðkÞ
W

� �r
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

volume fraction of transgranular damage

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCd

I Þ
q
|fflfflfflfflffl{zfflfflfflfflffl}

volume fraction
of intergranular damage

:
ð66Þ
Scalar crack densities are defined in the usual manner as effective cracked areas per unit reference volume:
xW �
1

V

XNW

k¼1

rðkÞW

� �2

; xI �
1

V

XN I

i¼1

rðiÞI

� �2

. ð67Þ
Maximum crack densities supported by each mechanism, denoted by xmax
W and xmax

I , are found by substituting
respective microstructure parameters rmax

W and rmax
I from Eqs. (46) and (55) into each of Eqs. (67). Critical

porosity and crack densities above which total failure (i.e., total stress relief) occurs can be specified in Eq.
(65) by parameters ufail, xfail

I , and xfail
W . Relative effects of porosity, crack density on W planes, and crack den-

sity at intergranular sites are weighed, respectively, by the scalar material constants au, aW, and aI. Note that
in the present implementation, strength reduction from damage would not occur under conditions of purely
compressive or shear loadings, since only mode I fractures are considered in the fracture models; hence, the
specification in Eq. (65) that K = 1 when u = 0.

The form of Eq. (65) was postulated in part upon consideration of the following special cases. Setting
au = 1 and aW = aI = 0 results in K = 1 � u, the usual prescription for the reduction in effective stiffness in
an elastic body supporting a dilute concentration of voids (cf. [3]). Setting aI = 1 and au = aW = 0 results
in K ¼ 1� xI=xmax

I , an appropriate reduction factor for the effective axial stiffness (or stress) of a body con-
taining a single (intergranular) flaw of radius rI oriented perpendicular to the loading direction [5]. In the pres-
ent implementation wherein a mixture of damage mechanisms evolves, values of parameters entering (65),
listed in Table 4, were chosen such that the model predictions agree with experimental data and observations,
as will be discussed more in Section 5.
4
ve damage properties

1.00
1.00
0.15

max
W 0.38
max
I 1

1
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Thermodynamic considerations are now revisited briefly for the particular model of Section 3. The macro-
scopic energy balance Eq. (20) and dissipation inequality (26) become, within the context of constitutive
assumptions Eqs. (63) and (64) and adiabatic conditions,
hKS; _Fi þ hKS; _Fd
W þ _Fd

I i ¼
d

dt
ðWþ �h�gÞ; ð68Þ

hKS; _Fi þ hKS; _Fd
W þ _Fd

I iP _Wþ _�h�g. ð69Þ
4. Numerical implementation

The plasticity and damage model formulated in Section 3 was implemented numerically in order to dem-
onstrate its predictive capabilities and compare these predictions with experimental findings. In the present
work the model was implemented within a three-dimensional material point simulator, which could act as
a single integration point within a three-dimensional Lagrangian finite element, for example. Deformation-
controlled simulations were conducted, with imposed values of F (see Eqs. (58)–(60)) applied to the grains
of the microstructure. Thermal conditions were specified as either isothermal or adiabatic.

For numerically integrating the thermomechanical response history of crystals comprising pure W and bin-
der phases according to the constitutive model of Section 3.1, implicit techniques were used, as discussed in
detail in [19], and described briefly in what follows. Let subscripts t and t + Dt denote consecutive computa-
tion instances in a nonlinear analysis, i.e., start and end times in a particular iteration. Inelastic shearing rates
for an increment spanning times t and t + Dt are found implicitly from values of the resolved shear stress and
hardening variables at the end of the iteration:
_cðaÞ ¼ _c0

~sðaÞtþDt

gðaÞtþDt

�����
�����
m

sgn ~sðaÞtþDt

� �
. ð70Þ
An iterative procedure is invoked to solve Eq. (70), as ~sðaÞtþDt and gðaÞtþDt depend upon the solution variables _cðaÞ.
For an adiabatic analysis, ~sðaÞtþDt and gðaÞtþDt depend upon h, via Eq. (38) and the temperature dependence of elas-
tic moduli. The temperature rate for a given increment spanning t and t + Dt is found, from Eq. (33) with
r = 0, explicitly in terms of quantities at time t:
_h ¼ b
qĉ

Xn

a¼1

sðaÞ _cðaÞ þ h
ĉ
ohðse : _eeÞ þ 1

qĉ
divðkrxhÞ

 !�����
t

; ð71Þ
where
b �
Xn

a¼1

sðaÞ _cðaÞ � qððon#Þ � hðohn#ÞÞ _n
 ! Xn

a¼1

sðaÞ _cðaÞ
 !�1

; ð72Þ
meaning that 1 � b is the ratio of time rates of stored energy to plastic work. The temperature at time t + Dt is
updated as
htþDt ¼ ht þ _hDt; ð73Þ
and the thermal deformation at the end of the step is determined from
fh
tþDt ¼ expðaT

_h1DtÞfh
t . ð74Þ
For each time increment, Eqs. (70) are solved implicitly using values of _h, ht+Dt, and fh
tþDt found from (71)–(74).

The thermoelastic term in Eq. (33) can be rewritten, to first order, as [19]
qhohee# : _ee ¼ hje�1ohðse : _eeÞ � qhjhohðjh�1Þðse : _eeÞ
� hje�1f½ðohkÞ~gab~gvd þ ðohlÞð~gav~gbd þ ~gad~gbvÞ�ð _eeÞvd þ 3aTðjh�1seabÞgð _eeÞab. ð75Þ
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For the pure W grains, possible cleavage fractures are captured by the model features discussed in Section
3.2. In the numerical implementation, prior to the initiation of damage in a particular grain, criterion Eq. (42)
is checked at the end of the iteration cycle (i.e., at time t + Dt) in that grain, for each of the nine potential
damage planes ({10 0} and {11 0}), with initiation strengths computed via Eq. (43) using updated local tem-
perature values ht+Dt. Upon initiation in a particular crystal, the rate of crack extension for the subsequent

time increment, _rðkÞW

���
tþDt

, is computed from Eq. (46), using values of the applied deformation rate imposed

(constantly) over the time increment and the projected nominal stress at the end of the increment. In the sub-
sequent cycle, the crack radius is updated simply as
rðkÞW

���
tþDt
¼ rðkÞW

���
t
þ ðDtÞ_rðkÞW

���
tþDt

; ð76Þ
the instantaneous crack opening magnitude is computed from the resolved normal stress from Eq. (45), and
the orientation of the crack opening vector in the spatial configuration is updated by the elastic rotation as
specified in Eq. (47).

Upon computation of the response (i.e., stress state, temperature, and damage variables) of each crystal of
each phase, the average nominal stress StþDt, temperature �htþDt, and intragranular damage deformation Fd

W

��
tþDt

are calculated from respective Eqs. (61), (19) and (44). Then, possible intergranular fractures are addressed by
an implementation of the model featured in Section 3.3. Recall that in the present scheme, intergranular frac-
ture is restricted to a single plane whose reference orientation M is determined from a maximum principal
stress-based criterion. Before damage develops, the orientation of the potential plane, M, is found as the prin-
cipal eigenvector of the symmetric nominal stress tensor SAaF �1B

:a

��
tþDt

. Criterion Eq. (50) is then checked versus
the resolved nominal stress due to StþDt, with the initiation strength computed in Eq. (51) using the updated
temperature value �htþDt. Upon initiation of intergranular damage, the rate of crack extension for the subse-

quent time increment, _rðiÞI

���
tþDt

, is computed from Eq. (55), and in the subsequent cycle, the crack radius is

updated in a manner analogous to (76). The instantaneous crack opening magnitude is computed from the
resolved normal stress using Eq. (53), and the orientation of the crack opening vector in the spatial configu-
ration is updated by the net material rotation as specified by Eq. (52).

At the conclusion of each iteration cycle, the contributions from material deformation, W cleavage, and
intergranular fracture are summed using Eq. (62) to yield the total deformation Ft+Dt. The porosity and micro-
crack densities are computed via Eqs. (66) and (67), and then substituted into Eq. (65) to compute the damage
variable Kt+Dt. Lastly, the effective stress St+Dt is found from Eq. (63).

Note that the present scheme is easy to implement if numerical crystal plasticity routines are available, as
the damage computations are effectively uncoupled from the constitutive update of the elastoplastic response
of each crystal. However, we found that very small integration time steps were required to capture the intri-
cacies of damage evolution, due to the explicit time integration of the microcrack radii, Eq. (76). It is under-
stood that should the model be employed in large scale calculations (i.e., a setting with numerous finite
elements, for example) the plasticity and damage algorithms may be more efficiently packaged in a fully cou-
pled implicit scheme, though this will require substantial algorithm development due to the unique nature of
the kinematic decomposition Eq. (62), and convergence difficulties may arise due to global strain softening in
the damaged regime. Furthermore, as the total deformation F cannot be an outcome in a general large scale
simulation, F rather than F will need to be imposed at each integration point.

5. Results and discussion

Predictions of the model under uniaxial tensile states of stress are discussed first. Deformations and strain
rates were prescribed in the simulations according to F 33 ¼ 1þ _�et, with _�e the nominal strain rate in the axial
direction (Cartesian coordinates are used here). In the simulations, isothermal conditions (h = 300 K) were
prescribed for low strain rate tests (_�e ¼ 0:1=s and _�e ¼ 0:0001=s), and adiabatic conditions were invoked at a
higher rate ð_�e ¼ 750=sÞ, with an initial temperature set to h0 = 300 K. As reported in [25], the experimental
data were obtained for a 93W–5Ni–2Fe tungsten alloy at low nominal strain rates ð_�e ¼ 0:1=s and
_�e ¼ 0:0001=sÞ with an Instron test machine, and at the high strain rate ð_�e ¼ 750=sÞ with a split Hopkinson
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bar apparatus (i.e., Kolsky bar). The experimental data are representative of behavior observed over numer-
ous tests at each strain rate.

Numerical results from the model are compared with experimental stress–strain data in Fig. 5. In these sim-
ulations, random initial lattice orientations were assigned to the polycrystalline aggregate, consisting of 300 W
crystals and 100 binder crystals. In the model and in the experiments, peak stresses (i.e., ultimate tensile
strengths) increase with increasing applied strain rate, in the former captured by the strain rate sensitivity
entering the flow rule Eq. (37). Ductility (i.e., elongation at failure or rupture) tends to decrease with increas-
ing strain rate, as higher tensile stresses more quickly activate a greater number of damage sites (i.e., micro-
fractures) in the material. At the lowest strain rate, _�e ¼ 0:0001=s, the peak average stress S33 in the model,
1.12 GPa, is insufficient to activate intergranular damage mechanisms (strength of 1.20 GPa in criterion
(50)) or cleavage fracture of any W crystals (strengths of 1.75 GPa and 1.90 GPa for {10 0} and {110} planes,
respectively). At the intermediate strain rate _�e ¼ 0:1=s, intergranular mechanisms are activated but cleavage
fractures are not. This prediction (and the assigned material properties in Tables 2 and 3) agrees with exper-
imental observations that intergranular failure modes (most notably W–W boundaries which serve as the
weakest link in the microstructure) tend to initiate more readily than cleavage fractures, especially at room
temperature [24,25,29]. Finally, at the highest strain rate considered, _�e ¼ 750=s, both inter- and intragranular
damage modes are active due to the relatively high tensile stresses, with peak values of S33 on the order of
1.65 GPa achieved in both simulation and experiment. At the highest strain rate, total failure of the polycrys-
talline aggregate was achieved in the simulation when the density of cleavage microcracks reached the limit
prescribed in Table 4, xfail

W =xmax
W ¼ 0:38, such that the nominal extension at rupture, F33 = 1.06, matched

the experimental result. Notice also in Table 4 that critical values for total rupture via intergranular failure
ðxfail

I =xmax
I Þ and porosity (ufail) are not assigned, as aforementioned experiments as well as numerical investi-

gations at the microscopic scale [19] have indicated that while evolution of damage typically first occurs at
intergranular sites, transgranular fractures must be induced in order to propagate a microcrack across a poly-
crystalline volume of significant dimensions, to a size large enough to cause catastrophic rupture of the spec-
imen, as not enough intergranular sites exist in the material to exclusively support such a large crack.

Figs. 6(a) and (b) depict the model predictions of crack density and porosity, respectively, at strain rates of
_�e ¼ 0:1=s and _�e ¼ 750=s. Damage initiates early in each case, at an applied stretch around F33 = 1.003, in rea-
sonable agreement with numerical results of a previous micromechanical investigation [19]. From Fig. 6(a), at
the lower strain rate of _�e ¼ 0:1=s, the intergranular crack density (Eq. (67)) saturates to its maximum allowed
value at F33 = 1.05, and cleavage fractures do not occur. On the other hand, at the higher strain rate of
_�e ¼ 750=s, both grain boundary and cleavage fractures increase steadily until final rupture occurs at
F33 = 1.06. Similar trends arise for the porosity u in Fig. 6(b): saturation of the volume fraction of intergran-
ular damage occurs at the lower strain rate _�e ¼ 0:1=s, whereas both inter- and intragranular damage contrib-
ute steadily to u at the higher rate _�e ¼ 750=s until rupture. Notice that at the lower strain rate, u decreases
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very slightly with increasing deformation upon reaching its peak value (on the order of u = 0.49), as some
elastic microcrack closure takes place due to stress relaxation.

Model results for 60 randomly oriented crystals (50 W grains and 10 binder grains) are compared with
results of 400 randomly oriented crystals (300 W grains and 100 binder grains) in Fig. 7. It was found that
including more than 400 crystals resulted in negligible changes to the homogenized model predictions for
stress-deformation-failure behavior. However, as is clear from Fig. 7, differences in results are apparent when
as few as 60 grains are used. In large scale computations, one may choose to include fewer grains (e.g., 60 as
opposed to 400) to reduce execution times, should discrepancies on the order of those in Fig. 7 be deemed
acceptable.

Effects of various volume fractions of W phase are shown in Fig. 8. As the volume fraction of the stiff W
phase increases relative to that of the more ductile binder, the stress S33 supported by the aggregate increases
at low and high strain rates, in general agreement with experimental trends reported in [26]. However, exper-
imental data [26] also indicate that ductility (i.e., strain at dynamic rupture) should decrease as the volume
fraction of W is increased, a phenomenon not captured by the model in Fig. 8, where at the high strain rate,
_�e ¼ 750=s, failure occurs consistently at F33 = 1.06 regardless of volume fraction. A reduction in ductility with
increasing volume fraction could easily and logically be captured by allowing critical microcrack densities and
porosity listed in Table 4 to depend upon the volume fraction of each phase, though more experimental data is
needed to justify for these parameters particular choices of functions of the initial microstructure.

Finally, Fig. 9 compares model predictions with experimental results under torsional (i.e., pure shear)
deformation. Deformations and strain rates were prescribed in the simulations according to F 12 ¼ _�ct, with
_�c the nominal shear strain rate. Isothermal conditions (h = 300 K) were prescribed for the low strain rate test
ð _�c ¼ 0:0001=sÞ, and adiabatic conditions were invoked at the higher rate ð _�c ¼ 600=sÞ, with an initial
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temperature of h0 = 300 K. Again, 400 randomly oriented grains (300 W and 100 binder) were simulated. The
experimental data were obtained for a 93W–5Ni–2Fe tungsten alloy with a split Hopkinson bar apparatus, as
discussed in [23]. The macroscopic shear stress R12 is reported in Fig. 9, where Rab ¼ J�1F a

:ASAb is the symmet-
ric Cauchy stress. At the lower strain rate, _�c ¼ 0:0001=s, agreement is excellent between model and experi-
ment, where significant damage does not ensue in either case. At the higher strain rate, _�c ¼ 600=s, the
strength predicted by the model is excessive relative to that of the experiment (peak stress of
R12 = 1.30 GPa versus 0.94 GPa). While mode I damage is captured by the present implementation of the
model (and these mechanisms are activated in the simulation at _�c ¼ 600=s), the model does not capture physics
of failure reported in the high rate torsion experiments [23]: adiabatic shear localization followed by tangential
fracture (modes II and III).
6. Conclusions

Presented, upon invocation of homogenization methods predicated upon the generalized Gauss’ theorem, is
a multiscale framework for describing finite deformation and failure mechanisms in multi-phase polycrystals.
Damage contributions arising from displacement discontinuities such as cracks, voids, and shear bands are
captured explicitly in the framework’s kinematics and balance relations through additive decompositions of
the total deformation gradient (Eqs. (5) and (62)) and nominal stress (Eqs. (11) and (61)). The present
approach allows for both strain and rotation accommodation due to damage evolution.

A specific version of the framework has been implemented to describe the thermomechanical response of a
two-phase tungsten alloy. The complete implementation consists of single crystal plasticity models capturing
thermo-elasto-viscoplasticity in each phase, a cleavage fracture model representing failure of tungsten grains,
an intergranular fracture model describing damage evolution at grain and phase boundaries, a polycrystal
averaging scheme with Taylor constraints, and a damage homogenization model relating the effective stress
to porosity and crack densities. Orientation-dependent damage initiation is specified on preferred cleavage
planes, with relative fracture strengths scaled in agreement with reported trends in fracture toughness, and
ductile-to-brittle transitions are captured to first order by temperature-dependent initiation criteria. Model
predictions for stress-versus-deformation behavior agree with experimental results at low and high tensile
strain rates and low shear strain rates. The model is unable to match experimental high rate shear data, as
sub-models for shear localization and tangential cracking are not included in the present implementation,
and remain to be developed in future studies. Additional areas for model development and improvement,
as more experimental data become available for validation, include development of a fully anisotropic damage
effect tensor entering Eq. (63), relaxation of the Taylor deformation gradient restriction Eq. (60) to capture
intergranular interactions, numerical incorporation of heat conduction, and further exploration of the homo-
genized thermodynamic framework developed in Eqs. (19)–(24) and Eqs. (68) and (69).
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